| 1. | Proof of a conjecture of harmonic univalent function 单叶调和函数一个猜想的证明 |
| 2. | On the fekete - szeg problem for a class of univalent functions 一类函数族的包含关系 |
| 3. | Harmonic univalent functions with negative coefficients 负系数调和单叶函数 |
| 4. | The properties of univalent functions with negative coefficients 一类解析函数的系数泛函 |
| 5. | On the adjacent coefficients for certain class of univalent functions 关于一类负实系数单叶函数族的性质 |
| 6. | Content : in this thesis , we investigate the goluzin problem on the successive coefficients of univalent functions , respectively solving the problem of goluzin on two subcate - gories of univalent functions and discussing fekele - szego problem of a new subcategory of univalent functions 本文研究了某些单叶函数族的相邻系数问题,主要解决了两类单叶函数族的goluzin问题和一类单叶函数族的fekete - szeg问题。 |
| 7. | Determining the extreme values and extremal functions of the analytic functions on d = { z $ c : z < 1 } is very important in the principles of univalent functions . baernstein [ 2 ] gave the conclusion by using koebe function as the extremal function , glenn schober [ 6 ] studied the classes such as s , p , k , s * of h ( d ) and represented these functions with integral formulations . wang jian [ 3 ] and others investigated the integral mean values Baernstein首先在单位圆上讨论给出了以koebe函数作为极值函数的结论, glennschober对h ( d )中一些函数子类如s 、 p 、 k 、 s ~ *等作了研究,将这些子类上的函数用积分表达出来,王键结合baernstein ~ *函数的定义及glennschober的结论,定义了对称集的概念并得出了一些函数类在其上的积分平均。 |